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The eigenvalue equation and the sets of linear equations that occur in linear and nonlinear
response function calculations have a specific paired structure. We have developed iterative
algorithms which utilize this structure to efficiently solve the equations. The algorithms have
been designed so they do not require the matrices to be explicitly available, which makes it
possible to perform accurate calculations with a dimension of maybe 10°. Numerical tests
show convergence behavior superior to previously suggested algorithms.  © 1988 Academic Press,
Inc.

1. INTRODUCTION

The simplest response function model is the time-dependent Hartree-Fock
(TDHF), also called the random phase approximation (RPA), which is obtained by
analyzing the response of a single configuration self-consistent-field (SCF) state to
an external perturbation [1]. Transition properties and second and higher order
molecular response properties can in principle be calculated very efficiently using a
response function approach [1]. Response function models have also been derived
for more sophisticated electronic wave functions, such as a multiconfigurational
MCSCEF state [2-4] and a coupled cluster state [5], and also using a perturbation
approach [6]. Common features of these models are (1) a generalized eigenvalue
problem with a specific paired structure must be solved to get transition properties
and (2) a set of linear equations with the same structured matrices must be solved
to get the second and higher order properties. Furthermore the matrices may be
very large, approximately 10® and in a few years maybe up to 107. It is therefore of
crucial importance for the response function approach to have efficient methods for
solving these two types of equations, preferably methods which do not require
explicit matrices. We describe such a new algorithm for each of the two types in
Section I1, and the efficiency is demonstrated in Section III by numerical examples.
We denote the generalized eigenvalue equation, which is encountered in time-
dependent response theory, the linear response (LR) eigenvalue equation and the
sets of linear equations, which are encountered, for the LR equations.
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For ground state calculations the LR eigenvalue equation may be expressed as
two symmetric eigenvalue problems of half the dimension [1]. For small dimen-
sions the solutions are straightforwardly obtained this way, but the dimension of
the matrices prohibits this approach even for many RPA calculations of interest.
Iterative RPA algorithms have therefore been developed to find the lowest few roots
[8, 10] (the lowest excitation energies) which usually are those of chemical interest.
These algorithms are similar to the iterative algorithms [11-18] used to find the
lowest few eigenvalues of the symmetric eigenvalue problem occurring in con-
figuration interaction (CI) studies of correlation. The developed iterative RPA
algorithms solve the RPA ecigenvalue equation as a nonsymmetric eigenvalue
problem without using the paired structure [8, 10].

In this paper we propose iterative algorithms, which employ the paired structure,
for obtaining the interesting roots of the LR eigenvalue equations and for solving
the LR equations. The iterative algorithms consist in expanding a basis of
orthonormal trial vectors and projecting the exact equations down on this basis
using only matrix times vector operations. The paired structure of the LR matrices
defines a paired vector for each trial vector, and each time one matrix times vector
operation has been carried out we also know the matrix times the paired vector.
The process of adding new pairs of trial vectors is continued until the desired
root/property is adequately described in the basis of trial vectors. We have a com-
mon framework for all of the equations because the same matrices enter the LR
eigenvalue equation and the LR equations irrespectively of the type of perturbation.
This enables us to reuse information gathered in one such calculation in any other
LR calculation for that state vector.

For the eigenvalue problem the algorithm may be viewed as a generalization of
the Davidson-Liu algorithm [14, 15] for the symmetric eigenvalue problem. In
normal cases, where the second energy derivative matrix (one of the linear response
matrices) is positive definite, complex eigenvalues cannot show up in our reduced
LR eigenvalue equation, furthermore the eigenvalues in the reduced space will
converge monotonically and be upper bounds to the exact eigenvalues [19]. In the
previously developed algorithms; where nonsymmetric eigenvalue equations are
solved, complex eigenvalues can show up in the reduced space, indicating the
paired trial vector is missing, and suggesting a slower and potentially unreliable
convergence.

Summarizing, we get two trial vectors for the cost of one, the reduced (projected)
problems have the same paired structure as the full equations which stabilize the
convergence processes, and we may reuse information from one property for other
properties.

In Section Il.a we present our new algorithm for the LR eigenvalue problem and
in Section I1.b we describe a very similar algorithm for the LR property equations
based on a generalization of the conjugate gradient method [20]. In Section IIT we
demonstrate by numerical examples the convergence characteristics of the
algorithms. Section IV contains some concluding remarks.
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II. ALGORITHMS

Il.a. The Linear Response Eeigenvalue Equation

The linear response (LR) eigenvalue equation for a real wave function is in its
most general form [4]

(69 -

where the matrices 4, B, and 2 are symmetric and 4 is antisymmetric. For MCSCF
wave functions 4, B, X, and 4 are defined in Egs. (5.62), (5.63), (5.65), and (5.66),
respectively, of Ref. [4]. For a closed shell Hartree-Fock wave function (the
random phase approximation) 4 is the zero matrix and 2 is the unit matrix. A
simple rearrangement of Eq. (1) gives

[(’; ﬁ)*“’(—iﬂ -ggﬂ(@ﬂ (2)

which shows that —w is an eigenvalue corresponding to the eigenvector (ff). If we

assume that the eigenvector (;;‘;) can be normalized to one over the metric ( £ g j'z),

o s [ 2 A4 !
ez (=, ) (5)- ()

. 2 . . .
then the eigenvector (%) is normalized to minus one:

s (2, )

The eigenvalues corresponding to the eigenvectors that can be normalized to one
approximate the excitation energies of the molecular system [1].

For large dimensions of the LR matrices it is necessary to find the solution
vectors using direct methods, that is, with algorithms that just require the two

linear transformations
<ly (4 B\/'b s
Zy - g 4 2_b ( )

(-5 %) 6
Zm - _ ‘4 _ g: 2_b ( )
to be carried out. In Section VLB of Ref. [4] we showed how the linear transfor-
mations may be implemented for MCSCF wave functions without explicitly setting
up the linear response matrices. The topic of this section is to describe an algorithm

which finds the lowest roots of Eq. (1) using a sequence of the linear transfor-
mations in Eqs. (5) and (6).
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In the algorithm we describe for determining the few lowest roots of Eq. (1) we
assume that in the nth iteration we have a set of k trial vectors

'b ' 'b 'b
) () () ()} "
and have carried out the linear transformations in Egs. (5) and (6)
1 1 1
G, G () ®
'm 'm 'm
{(2&1)1’ (2’.")2, (ZK")k}. ®)

Because of the structure of the two LR matrices the two linear transformations are

also known for the vectors
b b ’b
Kb) (b) (b>} ' (10)

The linear transformation in Eq. (5) gives

{(a), G Gl a

and the linear transformation in Eq. (6) gives

{_C:D ~<Z>2 "le}' (12)

We assume that the combined set of paired trial vectors in Eqs. (8) and (11) have
been orthonormalized. The optimal linear combination of the basis vectors in
Egs. (8) and (11) is determined from the reduced linear response eigenvalue

3

equation
AR BR ZR AR lxR
[(;R ;R)_wk(:dk :ZR)](2XR>=Q (13)
where the matrices 4%, B¥, and Z® are symmetric and 4* is antisymmetric and
defined as
1 1
¥ 4 B\('b
at=05 Bi(as) =c8 B4 5)(y) (14)
*u u
Bi=C5 () e85 5,(.) (15)
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The reduced 2k-dimensional eigenvalue equation for the basis vectors in Eqgs. (7)
and (10) can thus be set up based on knowledge of the vectors in Egs. (7)—(9).

If we want to determine the jth excitation energy then the jth root wf of the
reduced equation in Eq. (14) which satlsﬁes positive normalization condmon 1S an
approximation to that eigenvalue and ( ) is the best approximation to the eigen-
vector within the basis described by Eqs (7) and (10).

Convergence of the jth root is obtained when the norm of the residual

e (FEE  CAY] ©) L

is smaller than a given tolerance.
A straightforward extension of the Davidson algorithm [14] to the more general
eigenvalue equation in linear response gives the trial vector for the (n+ 1)th

iteration as
lb ldj 0 —1
- =~ R, 19
(0),.. (9 d) ! (1)

where 'd; and °d; are diagonal matrices containing the elements
4 =
‘11' o

d,

j i

ofZ, (20)
A,,+wRZ (21)

In Eq. (19) ( ) is considered to be a vector of the dimension of the LR eigenvalue
equation in Eq (7); that is, it is expanded in the original basis.

For convenience the vector (Zb)k+1 is orthogonalized against the 2k previous trial
vectors in Eqs. (7) and (10). The pair of new trial vectors, (), , and (), ,, are

also orthogonalized against each other using an orthonormalization scheme which
preserves the paired structure. We use symmetric orthonormalization. All trial
vectors in any iteration are then orthonormal with respect to the usual Euclidean
norm. For the LR eigenvalue equation we could have used vectors orthonormal
with respect to the LR metric (Eq. (3)), but then we would only be able to reuse
those trial vectors for the LR linear equations in Section ILb (e.g., for frequency
dependent polarizability) with great difficulty—in fact, we would then have to
reorthonormalize the trial vectors with respect to the Euclidean norm. The optimal
choice for efficiency is thus to use the Euclidean norm in the first place.
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Several roots can be determined simultaneously by applying Eq. (19) for as many
roots as desired (as described by Liu for the symmetric eigenvalue equation [15]).
The X', values are one for all operators in the CSF space. Small X', values may
appear in the orbital space for operators which are mainly introduced to describe
correlation effects.

In Eq. (1) where ( #, #,) is considered as metric, the negative and the smallest
positive eigenvalues which satisfy a positive normalization condition (see Eq. (3))
are usually those of interest as they describe the lowest excitation energies. The LR

Hessian matrix ( f; f ) may also be considered as metric [19] and the LR eigenvalue

equation then reads
2 4 1/4 B\\/'X
(2, 250 D))o 22

The eigenvalues of interest are now those of largest numerical value [19]. If we had
based the algorithm on this equation instead of Eq. (1) we would have obtained the
same sequence of trial vectors. We can thus use Eq. (22) to make statements about
the convergence. For ground state calculations (;’; f) is positive definite and the
square of the eigenvalues may be obtained by solving a Hermitian eigenvalue
problem (see, for example, Eq. (6.109) of Ref. [1]). McDonald’s theorem then gives
that the roots (all excitation energies are positive) of the reduced eigenvalue
equation in Eq. (14) separate the roots of the eigenvalue equation in Eq. (7). A
monotonic convergence towards the eigenvalues of Eq. (7) is therefore observed in
each iteration when the dimension of the reduced space is increased.

In order to elucidate the implementation of this algorithm a step-by-step descrip-
tion is given in the Appendix.

ILb. Linear Response Equations

The set of linear equations which has to be solved to determine response proper-
ties for an external perturbation is

4 B 2 4 1z C
~ T = ~ = =l ~.). 23
(3 2<% “2)-(5) )
The matrices 4, B, 2, and 4 are the same as those appearing in the linear response
eigenvalue equation in Eq. (1) and o is the frequency of the external perturbation.
The elements of the vector C describe the nonoptimality (the gradient) of the wave
function after the perturbation has been switched on. For an MCSCF wave

function and a real perturbation C is equal to the vector ( g) in Egs. (5.11)-(5.12) of
Ref. [1]. The + and — signs in the second component are used when the pertur-
bation operator is imaginary and real, respectively. The vector (g) describes the
first-order correction to the wave function due to the external perturbation [4] and
second-order molecular properties are determined as (C + C’)(;g .
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We now describe an iterative algorithm to solve Eq. (23) which finds the solution
vector from a sequence of the linear transformations in Egs. (5) and (6). We assume
that in the nth iteration of the algorithm we have generated the set of k orthonor-
mal vectors in Eq. (7) and that the linear transformations in Egs. (5) and (6) have
been carried out giving the vectors in Eqgs. (8) and (9), respectively. As in the eigen-
value case the linear transformations corresponding to the paired vectors in
Eg. (10) are also known. The trial vectors in Eqgs. (7) and (10) must be orthonor-
mal. The optimal linear combination of the basis vectors in Egs. (7) and (10) is
then determined from the reduced set of linear equations

AR BR ZR AR lzR CR
|:<~BZR :1R>_w<_~AR :2R>]<22R)=<+—CR>’ (24)
where A%, B®, Z® and 4* are defined in Eqgs. (14)-(17) and

Cr=('§ 25),( fc). (25)

The vector (gﬁ) is the optimal solution within the set of basis vectors in Egs. (7)

and (10).
The accuracy of a solution vector may be measured in terms of the norm of the

residual vector
A B z 4 A C
B‘K 4)“"(-4 —E)](ZZR)_<iC)' (26)

Convergence is obtained when the norm of the residual is smaller than a specified
tolerance. Trial vectors for the (n+ 1)th iteration may be generated using a
generalization of the conjugate gradient algorithm [20]

lb 3 l‘l Q -1
()=l ) ® en

where f! and f? are diagonal matrices with elements

- IR

fllck =Apy— 0Ly (28)
Sh=Au+oZy. (29)

The vector (;ﬁ)kﬂ is orthogonalized against the 2k trial vectors of the nth iteration
in Eqgs. (7) and (10) and the new pair of trial vectors of the (n+ 1)th iteration
(;g)k+l and (fi)k+1 are orthogonalized against each other using symmetric

orthonormalization. The iterative procedure is continued until the norm of the
residual is smaller than a specified tolerance. As starting vector we may use Eq. (27)

with R equal to ( fc). When o in Eq. (23) is close to a resonance it is advan-
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tageously first to locate the resonance from the linear response eigenvalue equation.
The vectors which determine the resonance may then be used as starting vectors to
solve the linear response equations. The resonance contribution to the solution is
then contained in the initial basis of trial vectors.

The solution vector to Eq. (23) can be used to determine second-order molecular
properties as (' Z 2Z)( fC). In Ref. [21] it is shown that the accuracy in the second-
order property is squared in the residual. If several components are calculated of a
second-order property (for example, the different components of the polarizability),
it is also shown in Ref. [21] that the out-of-diagonal components of second-order
properties have an accuracy squared in the residual if the same reduced space is
used to span all the solution vectors.

III. RESULTS

To illustrate the efficiency of the proposed algorithms we compare it to the
convergence characteristics of a previously reported RPA calculation on ethylene
by Bouman et al. [7], and we report a new MCLR calculation on the Neon atom.

The RPA calculation on ethylene was used by Bouman et al. [7] to illustrate the
convergence characteristics of their algorithm. Details of geometry and basis set can
be found there. In Table I we report the convergence characteristics of our new
algorithm for finding the lowest 6 singlet states, and in Table I we report the
corresponding characteristics for the algorithm of Bouman ez al. derived from the
results reported in Ref. [7]. The convergence in each iteration is measured as the

TABLE 1

The Difference between the Eigenvalues of the Reduced RPA Equation and the Converged RPA
Eigenvalues in a Sequence of Iterations for the Lowest 6 Singlet Excitations in Ethylene.
Convergence to a Residual Tolerance 103,

Root
number®
1 2 3 4 5 6
Iteration
number?
1(12) 0.0039027 0.0064854  0.0168965  0.0137942  0.0142670  0.0025675
2(18) 0.0000884  0.0014301  0.0029791  0.0009608  0.0003791  0.0000500
3(24) 0.0000008  0.0001017  0.0000006  0.0000265  0.0000070  0.0000005
4(30) 0.0000000  0.0000013  0.0000000  0.0000023  0.0000002  0.0000000
5(32) 0.0000001 0.0000002

% The fully converged excitation energies for the lowest 7 states are in a.u. 0.2626717, 0.2830822,
0.2844209, 0.2898198, 0.3009313, 0.3224419, and 0.3233291, respectively.

b The numbers in parentheses denote the number of linear transformations which is equal to half the
dimension of the reduced space RPA matrices.
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TABLE II

The Difference Calculated by Bouman ef al. [7] between the Eigenvalues of the Reduced RPA
Equation and the Converged RPA Eigenvalues in a Sequence of Iterations for the
Lowest 6 Singlet Excitations in Ethylene

Root
number
1 2 3 4 5 6
Iteration
number?
1(12) 0.0052563 0.0083572 0.0182450 0.0139583 0.0092640  0.0015487
2(18) 0.0004751 0.0015831 0.0057538  0.0016486 0.0008344  0.0000712
3(24) 0.0000114 0.00012557  0.0000526 0.0001223  —0.0000219  0.0000039
4(30) 0.0000053 0.0000768 0.0000187  0.0000104 0.0000042 <10~
5(35) <10~ 0.0001431 0.0000098  0.0000021 0.0000025
6(39) —0.0000949 —0.0000002 <10~ <10-¢
7(41) 0.0000035 <10-¢
8(42) <10-¢

4 The numbers in parentheses denote the number of trial vectors which have been used.

difference between the current approximate excitation energy (from the reduced
space) and the converged excitation energy. We converge to a residual tolerance
102, which leads to an accuracy of approximately 10~° in the excitation energies
(as in the case of a symmetric eigenvalue problem as standard configuration
interaction (CI)). Bouman et al. converge to a residual tolerance of 10~%; however,
their residual is defined differently from ours and their tolerance also leads to
approximately 10~¢ error in excitation energies. We note that our calculation con-
verged using a total of 32 trial vectors while Bouman et al. used 42 trial vectors.
More important for this rather small example, we observe from Table I that we
obtain a monotonic decrease in the excitation energies towards the totaily con-
verged results, while in the calculation by Bouman etal. in Table Il such a
monotonic decrease is not always obtained. For example, the error in root 2
increases from 0.000,076,8 in iteration 4 to 0.000,143,1 in iteration 5, and in
iteration 6 the approximate excitation energy is 0.000,094,9 below the totally con-
verged excitation energy.

A RPA calculation is usually much simpler than a MCLR calculation because in
the RPA calculation both the matrices (g f yand ( ¥ 9 f’z) are diagonally dominant.
In an MCLR calculation parts of these matrices have no diagonal dominance. In
Tables IIT and IV we report convergence charististics of a MCLR calculation on the
NE atom with 65 GTO’s [22]. All single double, triple, and quadruple excitations
out of the 25 and 2p orbitals into the 3s and 3p orbitals are included in the
configuration space. In Table III the convergence characteristic is given for a
calculation of the lowest excitations of X'S— 'S and X'S — 'D symmetry. The
calculations are carried out in the D,, subgroup and two components are therefore
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TABLE HI

The Difference between the Eigenvalues of the Reduced MCLR Equation and the Exact MCLR
Eigenvalues in a Sequence of Iterations for the Two Excitations of X'S — 1S
and X'S — 'D Symmetry in the Ne Atom. Convergence to a Residual Tolerance 10~*

Root
number?

Iteration”
number

1(13) 0.1329207(2)° 0.1329207(3) 0.1319480(1) 0.1859297(5) 0.1859297(6) 0.1817246(4)

2(19) 0.0194656(1) 0.0194661(2) 0.0160613(3) 0.0404303(4) 0.0404309(5) 0.0549739(6)

3(25) 0.0098700(1) 0.0098714(2) 0.0110460(3) 0.0240211(4) 0.0240221(5) 0.0413698(6)

4(31) 0.0001223(1) 0.0001225(2) 0.0070920(3) 0.0007897(4) 0.0007907(5) 0.0233305(6)

5(37) 0.0000111(1) 0.0000111(2) 0.0001210(3) 0.0000272(4) 0.0000272(5) 0.0004029(6)

6(43) 0.0000070(1) 0.0000070(2) 0.0000458(3) 0.0000030(4) 0.0000030(5) 0.0001180(6)
(

7(47) 0.0000261(3) 0.0000019(4) 0.0000019(5) 0.0000323(6)
8(49) 0.0000218(3) 0.0000082(6)
9(50) 0.0000065(6)

(1, 2) and (4, 5) are two components of the lowest two X'S — 'D excitations with excitation energy
0.6961506 a.u. and 0.755463 a.u., respectively; 3 and 6 are the lowest two X'S — 5§ excitations with
excitation energy 0.7087031 a.u. and 0.7593817 a.u., respectively.

® The numbers in parentheses denote the dimension of the reduced space MCLR matrices.

“ The numbers in parentheses denote the order of the eigenvalues in the reduced space.

included for each 'D state. The dimension of the matrices (4, B, 2, 4) is 291 of
which 105 is of orbital type. The convergence is, as expected, slower than in the
ethylene RPA calculation. Convergence to a residual tolerance of 10~ is obtained
in 6-9 iterations. In the first iteration in Table III the order of the lowest 'D and 'S
excitation energies is switched compared to the order in the converged calculation.
The convergence in Table IIl is typically linear convergence and, as expected,
monotonic towards the totally converged roots. In Table IV the convergence
characteristic is given for a calculation on the lowest excitations of X'S— !P,
X'S— 'F, and X'S - 'H symmetry. The dimension of the MCLR matrices is 225 of
which 79 is of orbital type. In the first three iterations in Table IV an incorrect
order is obtained in the excitation energies. After iteration 3 the excitations of 'F
and 'H symmetry have converged mainly due to small dimensions in these spaces
and in the final six iterations all new trial vectors are of ' P symmetry. At iteration 4
a hitherto missing root shows up (the error in the excitation energy drops from
0.11811145 to 0.0056951) and typical linear convergence is obtained from that
iteration onwards.

To demonstrate the efficiency of the iterative algorithm for solving the MC linear
response equations we report in Table V the convergence characteristics of a fre-
quency independent (@ = 0) polarizability calculation on Ne. The initial trial vector
was the property vector C divided by the diagonal LR matrix elements as described
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in Egs. (27)-(29). The calculation converged to a residual tolerance 10 in 11
iterations. The convergence characteristics of a calculation at frequency v =0.1 a.u.
using the same initial trial vector as in the =0 calculation is also given in
Table V. The convergence characteristics of the w =0 and w=0.1 calculation are
very similar and convergence is obtained in the same number of iterations. In
Table V we also report the convergence characteristics of a w=0.1 caiculation
where we have included the 11 trial vectors which were determined in the w =0
calculation, as initial trial vectors. Only four additional iterations are then required
to obtain convergence to the threshold 10 2. It is thus, as expected, important with
respect to computational efficiency to reuse the trial vectors when solving the linear
response equations at a new close-lying frequency.

When the frequency w in Eq. (23) is close to an excitation energy (a resonance)

the matrix ( ) o * g z) is nearly singular and straightforward application of the

generalized conjugate gradxent algorithm will give slow convergence. To illustrate
this point we report in Table VI the convergence characteristics obtained in a
calculation with @ =0.6320 a.u. (the excitation energy is 0.6316). The calculation
converges in 36 iterations which are significantly more iterations than the 11
iterations required in the calculations at the frequencies 0.0 a.u. and in 0.1 a.u.
(compare to Table V). In Table VI we also report the convergence characteristics
which are obtained if we include the 12 vectors which determine the excitation
energy to a residual tolerance 10 * as initial trial vector. Table VI shows that the
use of the trial vectors from an excitation energy calculation reduces significantly
the number of iterations which is required to obtain convergence. The excitation
energy trial vectors eliminate the near singularity contribution in the solution vec-
tor. In Table VI we also report a calculation where we, in addition to the excitation
energy trial vectors, have included the trial vectors of the frequency independent
calculation. These last trial vectors are seen to have basically no influence on the
convergence in this case.

IV. Discussion

A major advantage of our proposed eigenvalue algorithm is that although the LR
eigenvalue problem is formally a generalized eigenvalue problem we can use the
specific paired structure to obtain an algorithm which is just as stable and efficient
as the Davidson-Liu [14,15] algorithm for the normal symmetric eigenvalue
problem. The algorithm and the analogous iterative algorithm for solving LR sets
of linear equations are both solely based on the two linear transformations in
Eqgs. (5) and (6). As we envision LR matrices which may have a dimension of
10°~10° and larger this is an important part of the algorithms. For MCSCF wave
functions we have shown how the two linear transformations can be calculated
directly without explicit construction of the two matrices [4] and this is what
makes it feasible to perform large-scale, accurate LR calculations. The linear trans-
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formations will, by, far be the most CPU and IO demanding part of the calculation,
and the primary emphasis in the algorithm design has therefore been to minimize
the number of iterations (the number of linear transformations) rather than CPU
and IO in the eigenvalue algorithm. Therefore, if possible within the external con-
straints (memory, disk space), we prefer to keep all trial vectors in the reduced
space. In cases where vectors with no or very little importance can be isolated these
can be discarded without effecting the total convergence. In less fortunate cases the
reduction of the number of trialvectors can result in extra iterations.

The stable and efficient convergence has been obtained by always adding pairs of
trial vectors to the reduced space such that the reduced space matrices maintain the
paired structure of the full matrices. This is important as the roots of the reduced
eigenvalue equation will then monotonically converge to the roots of the linear
response eigenvalue equation. Recall that it does not require additional linear trans-
formations to include the paired trial vectors. The paired structure also guarantees
that complex roots cannot be obtained in the reduced space. In previously used
iterative algorithms complex roots have occasionally shown up.

When solving the linear response equations for frequency dependent properties
we have demonstrated the economy of reusing trial vectors from one frequency at
new frequencies. We have also shown that for frequencies near resonances the near
singularity contribution can be removed by including the trial vectors of the
resonance eigenvalue among the initial trial vectors. We have thus developed a very
efficient and numerically stable algorithm for finding the solution vectors of linear
response cigenvalue and linear equations directly, without explicit construction of
the large matrices. We believe this algorithm will be very important for the future
development of large scale linear and nonlinear response calculations.

APPENDIX: THE LR EIGENVALUE ALGORITHM

To elucidate implementation this Appendix contains a detailed step-by-step
description of the linear response eigenvalue algorithm which was verbally
described and discussed in Section IIl.a. We use here “#” to denote the paired

vector
lX< ZX_
ifXj:(z}J_) then X7 =(1;>.

25 £

The other matrices and vectors used below are defined in Section Il.a. A step-by-
step description of the LR property algorithm in Section ILb is obtained by reading
“set of linear equations” instead of “eigenvalue equation” below (K may be greater
than one if several properties are solved for).

PrROBLEM. Determine the K first excitation energies to a residual tolerance of
t(eg, t=1073)
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Initialization.

(a) Select k=K.
(b) Select a set U, = {b,, b{,.., by, b7 } of initial trial vectors.
(c) Setp=0.

Iteration (n=0,1, 2, ...).

(a) Calculate {y»=(§ Dbm=(%, 4)bsi=p+1,p+k}.

(b) Save {b;, u;, m;; p+1 p+k} in memory or on external storage (for
steps (c) and (g)).

(c) Extend the reduced eigenvalue equation with {b,, 87 ;i=p+1, p+k}.

(d) Setp=p+k

(e} Solve reduced eigenvalue equation of dimension 2p.

(f) Select k=K.

(g) Calculate the residual vectors R;, j=1, k for nonconverged roots.

(h) Test for convergence: ||R;| <t Decrement k with one for each converged

root. If the K lowest roots are converged then exit, otherwise continue to (i) with
the k R;-vectors associated with nonconverged roots.

(i) Calculate b,,,=D;'R;, j=1,k.

Lp+jT

(j) Gram-Schmidt orthonormalize these new trial vector pairs to previous
trial vectors U, and symmetrically orthonormalize them to each other. Omit any
linear dependent {b;, b7 } pairs and decrement k by one for each linear dependent
pair.

(k) If k=0 then error exit; otherwise go back to (a) for next iteration with
n=n+1.

If desired because space requirements dictate so, or because the I/O involved
becomes significant, it is possible to restart as in the Davidson algorithm [14] or to
only keep a small number of vectors in the reduced basis as in Ref. [18].
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